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General Turing Reductions: 
- P Turing reduces to Q if there exists an algorithm for P that uses an algorithm for Q as 

a “black box”. This is denoted as P ≤T Q. 
Halting Problem: 

- Denoted as H. 
- H = {⟨M, x⟩ | TM M halts on input x} 

H accepts the encodings of M and x if M halts on x, and rejects the encodings otherwise. 
- Theorem 4.1: H is 

a. recognizable but  
b. not decidable. 

 
Proof of a): 
Use Mu to simulate M on input x. 
If Mu halts (either accepts or rejects), then we say yes. 
If Mu doesn’t halt, then it’s fine because H is a recognizer, not a decider. 
  
Proof of b): 
We will show that U ≤ H. 
U is the universal language. In theorem 3.5, we proved that U is recognizable but not 
decidable. 
Given an H-decider TM M1, we will construct a U-decider TM M2. 
M2 on input ⟨M, x⟩ does the following: 

1. Run M1 on ⟨M, x⟩ 
2. If M1 accepts, then 
3.     Run Mu on ⟨M, x⟩ 
4.     If Mu accepts ⟨M, x⟩, then M2 accepts 
5.     Else, M2 rejects 
6. Else, M2 reject 

 
M2 accepts U. 
First, it runs M1 on ⟨M, x⟩. 
If M1 accepts, meaning that it halts on ⟨M, x⟩, then we run Mu on ⟨M, x⟩. 
If Mu accepts ⟨M, x⟩, then M2 accepts ⟨M, x⟩. 
If Mu doesn’t accept ⟨M, x⟩, then M2 rejects ⟨M, x⟩. 
If M1 doesn’t accept ⟨M, x⟩, that means M1 doesn’t halt on ⟨M, x⟩, so M2 rejects ⟨M, x⟩. 
 
However, we proved in theorem 3.5 that U is not decidable, so M2 doesn’t exist.  
Since M2 relies on the existence of M1, therefore, M1 doesn’t exist. 
Therefore, H is undecidable. 
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Here’s a diagram of the proof: 

 
 
Alternative Proof of b): 
Given an H-decider M3, we can construct a U-decider M4 as follows: 
M4 on input ⟨M, x⟩ does the following: 

1. Modify M to M’ by changing every transition of M to the reject state into an infinite 
loop. 
We know that M either accepts, rejects or loops on x. 
If M accepts x, then M’ accepts x. 
If M rejects or loops on x, then M’ loops on x. 

2. Run M3 on ⟨M’, x⟩. 
3. If M3 accepts, then M4 accepts. 
4. Else, M4 rejects. 

 
M4 accepts ⟨M, x⟩ 
↔  M 3 accepts ⟨M’, x⟩ 
↔  M’ halts on x 
↔  M accepts x  
Therefore, M4 is a U-decider. 
However, this contradicts theorem 3.5, which says that U is not decidable. 
Therefore, we could not have been given an M3 that solves the halting problem. 
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Here’s a diagram of the proof: 

 
- Corollary 4.2: ㄱH, the complement of H, is unrecognizable. 
ㄱH = {⟨M, x⟩ | M doesn’t halt on x} 
 
Proof: 
Suppose by contradiction that ㄱH is recognizable. 
Recall theorem 3.6 “If L and ㄱL, the complement of L, are both recognizable, then L and 
ㄱL are decidable.” 
Since both H and ㄱH are recognizable, then both H and ㄱH are decidable. 
However, we know that H is not decidable, which is a contradiction. 
Hence, ㄱH is unrecognizable. 

- If X ≤ Y and X is undecidable, then Y is also undecidable.  
However, if X ≤ Y and Y is undecidable, it doesn’t tell us if X is undecidable or not. 
Note: The direction in which we are reducing things is very important. 
E.g. 
When we did U ≤ H, since we knew that U is undecidable, we could prove that H is 
undecidable. 
However, if we did H ≤ U, we know that U is undecidable, but we don’t know if H is 
undecidable. We can’t use this to prove that H is undecidable. 

- If X ≤ Y and Y is decidable, then X is also decidable.  
Mapping Reductions: 

- Definition: Let P and Q ⊆ Σ* be languages. P is mapping-reducible to Q, denoted as  
P ≤m Q, iff there exists a computable function, f : Σ* → Σ*, such that x ∈ P iff f(x) ∈ Q. 
Note: The function, f, does not have to be, and is usually not, onto. 
Note: The function, f, must be computable. 
To demonstrate a computable function, we will typically write a little program or describe 
in English how to perform the transformation that f is supposed to do. 
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Note: f maps yes-instances of P to yes-instances of Q and no-instances of P to 
no-instances of Q. 
Here is a diagram to show the definition of mapping-reducible: 

 
Here, f maps the Yes-instances of P to a subset of the Yes-instances of Q and maps the 
No-instances of P to a subset of the No-instances of Q. 

- E.g. Suppose that 
A = {x | x is an even integer} 
B = {x | x is an odd integer} 
Then the function f(x) = x + 1 is a mapping reduction from A to B.  
Notice that: 
x ∈ A ↔  x is even 
         ↔  x + 1 is odd 
         ↔  x + 1 ∈ B 
         ↔  f(x) ∈ B 

- All the reductions we’ve seen so far, with one exception, are mapping reductions. 
1. First Reduction: Reduced ㄱD (D complement) to U (Universal language) 
- ㄱD = {⟨M⟩ | M accepts ⟨M⟩} 
- f: ⟨M⟩ → ⟨M, ⟨M⟩⟩ 

Here is a description of f: 
- Take the encoding of M. 
- Make a pair of itself and another encoding of M in the following way: 

⟨M⟩###⟨M⟩ (The ### is used as a separator.) 
2. Second Reduction: Reduce U to H (The Halting Problem) 
- Note: This is for the “Alternative Proof of b)” 
- Given ⟨M, x⟩ we constructed ⟨M’, x⟩ such that M accepts x iff M’ halts on x. 

M accepts x simply means ⟨M, x⟩∈U and M’ halts on x simply means ⟨M’, x⟩∈H. 
So, I mapped ⟨M, x⟩ to ⟨M’, x⟩ such that Yes-instances go to Yes-instances and 
No-instances go to No-instances. 

- Note: The first proof we did to prove that U reduces to H is not a mapping 
reduction. The difference between the first and second proof is that with the first 
proof, we’re taking the input, ⟨M, x⟩, and running it through 2 “black boxes”, M1 
and Mu. Furthermore, after running the input through the first “black box”, M1, 
there’s a possibility that we’re changing its output by running the output through 
the second “black box”, Mu. 
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With the second proof, we’re transforming ⟨M, x⟩ to ⟨M’, x⟩, this is our function, 
and we’re only running it through 1 TM, M3. In the second proof, we’re using M3 in 
a very restricted way. We are only making 1 call to the “black box” and we’re 
using the output of the “black box” as it is, we can’t change it. 

- Hence, the first proof is a Turing reduction while the second proof is a mapping 
reduction. 

- Theorem 4.3: Suppose that P ≤m Q. If Q is decidable, then P is decidable. If P is 
undecidable, then Q is undecidable. 
 
Proof of “If P is undecidable, then Q is undecidable”: 
Assume that P ≤m Q and P is undecidable. 
Suppose for contradiction that Q is decidable. 
Let DQ be a decider for Q. 
Since P ≤m Q, there exists a computable function, f, such that x ∈ P iff f(x) ∈ Q. 
Then, the following algorithm is a decider for P: 
DP on input “x” does the following: 

1. Computes f(x)  
2. Run DQ on f(x). 
3. If DQ accepts, then DP accepts. 
4. Else, DP rejects. 

DP halts on all inputs, so it’s a decider.  
DP decides P because it accepts x iff DQ accepts f(x). 
DQ accepts f(x) iff f(x) ∈ Q, because DQ is a decider for Q. 
f(x) ∈ Q iff x ∈ P, because f is a mapping reduction of P to Q. 
However, this contradicts our supposition that P is undecidable. 
Hence, Q is undecidable. 

- Theorem 4.4: If P ≤m Q and Q is recognizable, then P is recognizable. If P is 
unrecognizable, then Q is unrecognizable. 

- Theorem 4.5: If P ≤m Q, then ㄱP ≤m ㄱQ, where ㄱP is the complement of P and ㄱQ is 
the complement of Q. 
 
Proof: 
Consider the diagram below. 
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We know that f maps the Yes-instances of P to the Yes-instances of Q and the 
No-instances of P to the No-instances of Q.  
However,  

- The No-instances of P are the same as the Yes-instances of ㄱP. 
- The No-instances of Q are the same as the Yes-instances of ㄱQ. 
- The Yes-instances of P are the same as the No-instances of ㄱP. 
- The Yes-instances of Q are the same as the No-instances of ㄱQ. 

Hence, we can use the same function, f, as the computable function for ㄱP ≤m ㄱQ. 
- Theorem 4.6: If P ≤m Q and Q ≤m R, then P ≤m R. 

Examples of Reductions: 
- To prove that a language P is unrecognizable or undecidable, it suffices to prove that  

U ≤m P, for undecidable, and ㄱU ≤m P, for unrecognizable. This is by theorem 4.3 and 
3.4. 

- Theorem 4.7: Consider the following language, E = {⟨M⟩ | L(m) = Ø}. E is 
unrecognizable. 
 
Proof: 
It suffices to prove that ㄱU ≤m E. 
Given ⟨M,x⟩, which is the input to ㄱU, we want to construct ⟨M’⟩, which is the input to E, 
such that M does not accept x iff L(M’) = Ø. 
I.e. ⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E. 
We can build M’ such that if M doesn’t accept x, M’ accepts no string, and if M accepts x, 
M’ accepts every string. 
f on input ⟨M,x⟩ does the following: 

1. Define a machine M’ that does the following on input y: 
a. Run M on x 
b. If M accepts, then M’ accepts y.  
c. Else, M’ rejects y. 

2. Return ⟨M’⟩ 
 
Here’s a diagram showcasing the proof. 

 
If M does not accept x, then L(M’) = Ø. 
If M accepts x, then L(M’) = Σ*. 
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Claim: f is a mapping reduction of ㄱU to E. 
Proof: 
To prove that f is a mapping reduction of ㄱU to E, we need to verify that 
⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E. 
(=>) If ⟨M,x⟩ ∈ ㄱU 
→ M does not accept x. (M either loops on x or M rejects x.) 
→ M’ accepts no input. 
→ L(M’) = Ø 
→ ⟨M’⟩ ∈ E 
 
(<=) If ⟨M,x⟩ ∉ ㄱU 
→ M accepts x. 
→ M’ accepts all inputs. 
→ L(M’) = ∑* ≠ Ø 
→ ⟨M’⟩ ∉ E 

- Theorem 4.8: ㄱE, the complement of E, is 
a. undecidable, but 
b. recognizable 

ㄱE = {⟨M⟩| L(M) ≠ Ø} 
 
Proof of a): 
Suppose for contradiction that ㄱE is decidable. 
Then, based on theorem 3.3, which states that  
“If L is a decidable language, then its complement is also decidable.  
I.e. The set of decidable languages is closed under complementation.”,  
then E is also decidable. 
However, we just proved in theorem 4.7 that E is undecidable, which is a contradiction. 
Hence, ㄱE is undecidable. 
 
Proof of b): 
The idea is to dovetail through all pairs (i,j). When visiting pair (i,j), run M on the ith input 
for j steps. If it accepts, then we accept. Otherwise, visit the next pair. 
If M doesn’t accept or reject the ith input for j steps, we simply continue the dovetailing 
process. This is fine because as a recognizer, it doesn’t need to halt. 
Note: The reason why you can’t simply go down each input is because there might be 
an input that loops forever. Then, your machine would be stuck. 
 
Another Proof of b): 
A NTM recognizes ㄱE on input ⟨M⟩ as follows: 

1. Nondeterministically guess a string x. 
2. Use Mu, the universal TM, to run M on x. 
3. If M accepts, accept. 
4. Since there’s a NTM that recognizes ㄱE, there’s also a TM that recognizes ㄱE. 
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- Theorem 4.9: Consider the following language, REG = {⟨M⟩ | L(M) is regular}. REG is 
undecidable. 
 
Proof: 
It suffices to prove that U ≤M REG. 
Given an input, ⟨M, x⟩ to U, we want to construct a machine ⟨M’⟩, which is an input to 
REG such that M accepts x iff L(M’) is regular. 
If M accepts x, then M’ accepts a regular language. 
If M does not accept x, then M does not accept a regular language. 
f on input ⟨M, x⟩ does the following: 

1. Define M’ which on input y does the following: 
a. If y=0n1n, then accept 
b. Else, run M on x. 
c. If M accepts x, then M’ accepts y. 
d. Else, M’ rejects y. 

2. Return ⟨M’⟩ 
 
Now, we need to verify that ⟨M, x⟩ ∈ U iff ⟨M’⟩ ∈ REG. 
(=>) 
If ⟨M, x⟩ ∈ U then 
→ M accepts x. 
→ M’ accepts all inputs y. It does this in either line 1a. or line 1c. otherwise. 
→ L(M’) = ∑*. 
→ ⟨M’⟩ ∈ REG. 
 
(<=) 
If ⟨M, x⟩ ∉ U then 
→ M does not accept x. 
→ M’ accepts all and only strings of the form 0n1n. 
→ L(M’) is not regular. 
→ ⟨M’⟩ ∉ REG. 
We have shown that U ≤M REG, so REG is undecidable. 
 
Note: Since U ≤M REG, ㄱU ≤M ㄱREG. This is by theorem 4.5. 
Since ㄱU ≤M ㄱREG, ㄱREG is unrecognizable. 
Note: U ≤M ㄱREG, which means that ㄱU ≤M REG. 
Since ㄱU ≤M REG, REG is unrecognizable. 
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Picture of Recognizable and Decidable Languages: 

 
 


