CSCC63 Week 4 Notes

General Turing Reductions:

P Turing reduces to Q if there exists an algorithm for P that uses an algorithm for Q as
a “black box”. This is denoted as P <; Q.

Halting Problem:

Denoted as H.
H = {(M, x) | TM M halts on input x}
H accepts the encodings of M and x if M halts on x, and rejects the encodings otherwise.
Theorem 4.1: H is
a. recognizable but
b. not decidable.

Proof of a):

Use M, to simulate M on input x.

If M, halts (either accepts or rejects), then we say yes.

If M, doesn't halt, then it's fine because H is a recognizer, not a decider.

Proof of b):
We will show that U < H.
U is the universal language. In theorem 3.5, we proved that U is recognizable but not
decidable.
Given an H-decider TM M,, we will construct a U-decider TM M.,
M, on input (M, x) does the following:

1. Run M, on (M, x)

2. If M, accepts, then

3 Run M, on (M, x)

4. If M, accepts (M, x), then M, accepts

5 Else, M, rejects

6. Else, M, reject

M, accepts U.

First, it runs M, on (M, x).

If M, accepts, meaning that it halts on (M, x), then we run M, on (M, x).

If M, accepts (M, x), then M, accepts (M, x).

If M, doesn’t accept (M, x), then M, rejects (M, x).

If M, doesn’t accept (M, x), that means M, doesn’t halt on (M, x), so M, rejects (M, x).

However, we proved in theorem 3.5 that U is not decidable, so M, doesn’t exist.
Since M, relies on the existence of M,, therefore, M, doesn’t exist.
Therefore, H is undecidable.

CSCC63 Week 4 Notes

Here’s a diagram of the proof:

Alternative Proof of b):
Given an H-decider M,, we can construct a U-decider M, as follows:
M, on input (M, x) does the following:
1. Modify M to M’ by changing every transition of M to the reject state into an infinite
loop.
We know that M either accepts, rejects or loops on x.
If M accepts x, then M’ accepts x.
If M rejects or loops on x, then M’ loops on x.
2. Run M, on {(M’, x).
3. If M, accepts, then M, accepts.
4. Else, M, rejects.

M, accepts (M, x)

« M, accepts (M’, x)

< M’ halts on x

«— M accepts x

Therefore, M, is a U-decider.

However, this contradicts theorem 3.5, which says that U is not decidable.
Therefore, we could not have been given an M, that solves the halting problem.

CSCC63 Week 4 Notes

Here’s a diagram of the proof:

(onsiiac

(M)

(1) r¥

M)

Corollary 4.2: 71H, the complement of H, is unrecognizable.
TTH = {(M, x) | M doesn’t halt on x}

Proof:

Suppose by contradiction that 71H is recognizable.

Recall theorem 3.6 “If L and 1L, the complement of L, are both recognizable, then L and
1L are decidable.”

Since both H and TTH are recognizable, then both H and 71H are decidable.
However, we know that H is not decidable, which is a contradiction.

Hence, 7TH is unrecognizable.

If X <Y and X is undecidable, then Y is also undecidable.

However, if X <Y and Y is undecidable, it doesn’t tell us if X is undecidable or not.
Note: The direction in which we are reducing things is very important.

E.g.

When we did U < H, since we knew that U is undecidable, we could prove that H is
undecidable.

However, if we did H < U, we know that U is undecidable, but we don’t know if H is
undecidable. We can’t use this to prove that H is undecidable.

If X<Y and Y is decidable, then X is also decidable.

Mapping Reductions:

Definition: Let P and Q S 5 be languages. P is mapping-reducible to Q, denoted as
P <, Q, iff there exists a computable function, f : " — ', such that x € P iff f(x) € Q.
Note: The function, f, does not have to be, and is usually not, onto.

Note: The function, f, must be computable.

To demonstrate a computable function, we will typically write a little program or describe
in English how to perform the transformation that f is supposed to do.

CSCC63 Week 4 Notes

Note: f maps yes-instances of P to yes-instances of Q and no-instances of P to
no-instances of Q.
Here is a diagram to show the definition of mapping-reducible:

Here, f maps the Yes-instances of P to a subset of the Yes-instances of Q and maps the
No-instances of P to a subset of the No-instances of Q.
- E.g. Suppose that
A ={x| x is an even integer}
B = {x | xis an odd integer}
Then the function f(x) = x + 1 is a mapping reduction from A to B.
Notice that:
X € Ao xiseven
« X+ 1is odd
—x+1€8B
—f(x) €B
- All the reductions we’ve seen so far, with one exception, are mapping reductions.
1. First Reduction: Reduced 71D (D complement) to U (Universal language)
- 1D = {{M) | M accepts (M)}
- (M) > M, (M)
Here is a description of f:
- Take the encoding of M.
- Make a pair of itself and another encoding of M in the following way:
(MYy#HKM) (The ### is used as a separator.)
2. Second Reduction: Reduce U to H (The Halting Problem)
- Note: This is for the “Alternative Proof of b)”
- Given (M, x) we constructed (M’, x) such that M accepts x iff M’ halts on x.
M accepts x simply means (M, x)€U and M’ halts on x simply means (M’, x)EH.
So, | mapped (M, x) to (M’, x) such that Yes-instances go to Yes-instances and
No-instances go to No-instances.
- Note: The first proof we did to prove that U reduces to H is not a mapping
reduction. The difference between the first and second proof is that with the first
proof, we're taking the input, (M, x), and running it through 2 “black boxes”, M,
and M,. Furthermore, after running the input through the first “black box”, M,,
there’s a possibility that we're changing its output by running the output through
the second “black box”, M,

CSCC63 Week 4 Notes

With the second proof, we're transforming (M, x) to (M’, x), this is our function,
and we’re only running it through 1 TM, M,. In the second proof, we're using M, in
a very restricted way. We are only making 1 call to the “black box” and we’re
using the output of the “black box” as it is, we can’t change it.
- Hence, the first proof is a Turing reduction while the second proof is a mapping

reduction.

Theorem 4.3: Suppose that P < Q. If Q is decidable, then P is decidable. If P is

undecidable, then Q is undecidable.

Proof of “If P is undecidable, then Q is undecidable”:
Assume that P < Q and P is undecidable.
Suppose for contradiction that Q is decidable.
Let D, be a decider for Q.
Since P < Q, there exists a computable function, f, such that x € P iff f(x) € Q.
Then, the following algorithm is a decider for P:
D, on input “x” does the following:
1. Computes f(x)
2. Run D, on f(x).
3. If D, accepts, then D, accepts.
4. Else, D, rejects.
D, halts on all inputs, so it's a decider.
D, decides P because it accepts x iff D, accepts f(x).
D, accepts f(x) iff f(x) € Q, because D is a decider for Q.
f(x) € Qiff x € P, because f is a mapping reduction of P to Q.
However, this contradicts our supposition that P is undecidable.
Hence, Q is undecidable.
Theorem 4.4: If P < Q and Q is recognizable, then P is recognizable. If P is
unrecognizable, then Q is unrecognizable.
Theorem 4.5: If P < Q, then TP < 71Q, where T1P is the complement of P and 71Q is

the complement of Q.

Proof:
Consider the diagram below.

CSCC63 Week 4 Notes

We know that f maps the Yes-instances of P to the Yes-instances of Q and the
No-instances of P to the No-instances of Q.
However,
- The No-instances of P are the same as the Yes-instances of 71P.
- The No-instances of Q are the same as the Yes-instances of 71Q.
- The Yes-instances of P are the same as the No-instances of 71P.
- The Yes-instances of Q are the same as the No-instances of 71Q.
Hence, we can use the same function, f, as the computable function for 1P < 1Q.
- Theorem4.6:1fP< QandQ<_ R,thenP < R.
Examples of Reductions:

- To prove that a language P is unrecognizable or undecidable, it suffices to prove that
U < P, for undecidable, and 71U <_ P, for unrecognizable. This is by theorem 4.3 and
3.4.

- Theorem 4.7: Consider the following language, E = {{M) | L(m) = &}. E is
unrecognizable.

Proof:
It suffices to prove that 71U < E.
Given (M,x), which is the input to 71U, we want to construct (M’), which is the input to E,
such that M does not accept x iff L(M’) = Q.
l.e. (M,x) € U iff (M’) € E.
We can build M’ such that if M doesn’t accept x, M’ accepts no string, and if M accepts x,
M’ accepts every string.
f on input (M,x) does the following:
1. Define a machine M’ that does the following on input y:
a. RunMonx
b. If M accepts, then M’ accepts y.
c. Else, M’ rejects y.
2. Return (M’)

Here’s a diagram showcasing the proof.

If M does not accept x, then L(M’) = Q.
If M accepts x, then L(M’) = 5

CSCC63 Week 4 Notes

Claim: f is a mapping reduction of 71U to E.

Proof:

To prove that f is a mapping reduction of 71U to E, we need to verify that
M,x) € TU iff (M’) € E.

=) IfMx) € U

— M does not accept x. (M either loops on x or M rejects x.)

— M’ accepts no input.

—LM)=0

— <|\/|’> e E

(<=)If(M,x) ¢ TU

— M accepts x.

— M’ accepts all inputs.

SLM)=Y #@

— (M€ E

Theorem 4.8: 71E, the complement of E, is
a. undecidable, but
b. recognizable

E = {{M)| L(M) # &}

Proof of a):

Suppose for contradiction that 71E is decidable.

Then, based on theorem 3.3, which states that

“If L is a decidable language, then its complement is also decidable.

l.e. The set of decidable languages is closed under complementation.”,

then E is also decidable.

However, we just proved in theorem 4.7 that E is undecidable, which is a contradiction.
Hence, T1E is undecidable.

Proof of b):

The idea is to dovetail through all pairs (i,j). When visiting pair (i,j), run M on the i'" input
for j steps. If it accepts, then we accept. Otherwise, visit the next pair.

If M doesn’t accept or reject the i input for j steps, we simply continue the dovetailing
process. This is fine because as a recognizer, it doesn’t need to halt.

Note: The reason why you can’t simply go down each input is because there might be
an input that loops forever. Then, your machine would be stuck.

Another Proof of b):
A NTM recognizes T1E on input (M) as follows:
1. Nondeterministically guess a string x.
2. Use M, the universal TM, to run M on x.
3. If M accepts, accept.
4. Since there’s a NTM that recognizes T1E, there’s also a TM that recognizes T1E.

CSCC63 Week 4 Notes

Theorem 4.9: Consider the following language, REG = {{M) | L(M) is regular}. REG is
undecidable.

Proof:
It suffices to prove that U <, REG.
Given an input, (M, x) to U, we want to construct a machine (M’), which is an input to
REG such that M accepts x iff L(M’) is regular.
If M accepts x, then M’ accepts a regular language.
If M does not accept x, then M does not accept a regular language.
f on input (M, x) does the following:
1. Define M’ which on input y does the following:
a. If y=0"1", then accept
b. Else, run M on x.
c. If M accepts x, then M’ accepts y.
d. Else, M’ rejects y.
2. Return (M)

Now, we need to verify that (M, x) € U iff (V") € REG.

(=>)

If (M, x) € U then

— M accepts x.

— M’ accepts all inputs y. It does this in either line 1a. or line 1c. otherwise.
SLM) =Y.

— (M) € REG.

(<=)

If (M, x) ¢ U then

— M does not accept x.

— M’ accepts all and only strings of the form 0™1".

— L(M’) is not regular.

— (M’) € REG.

We have shown that U <, REG, so REG is undecidable.

Note: Since U <, REG, 11U 5, TTREG. This is by theorem 4.5.
Since 71U <, TTREG, TTREG is unrecognizable.

Note: U 5, TTREG, which means that 71U <, REG.

Since 71U <, REG, REG is unrecognizable.

CSCC63 Week 4 Notes

Picture of Recognizable and Decidable Languages:
e —

2able

—

—

I.l;"- { I':I.."}J.']E e -

