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General Turing Reductions: 
- P ​Turing reduces​ to Q if there exists an algorithm for P that uses an algorithm for Q as 

a “black box”. This is denoted as P ≤​T​ Q. 
Halting Problem: 

- Denoted as H. 
- H = {⟨M, x⟩ | TM M halts on input x} 

H accepts the encodings of M and x if M halts on x, and rejects the encodings otherwise. 
- Theorem 4.1:​ H is 

a. recognizable but  
b. not decidable. 

 
Proof of a): 
Use M​u​ to simulate M on input x. 
If M​u​ halts (either accepts or rejects), then we say yes. 
If M​u​ doesn’t halt, then it’s fine because H is a recognizer, not a decider. 
  
Proof of b): 
We will show that U ≤ H. 
U is the universal language. In theorem 3.5, we proved that U is recognizable but not 
decidable. 
Given an H-decider TM M​1​, we will construct a U-decider TM M​2​. 
M​2​ on input ⟨M, x⟩ does the following: 

1. Run M​1​ on ⟨M, x⟩ 
2. If M​1​ accepts, then 
3.     Run M​u​ on ⟨M, x⟩ 
4.     If M​u​ accepts ⟨M, x⟩, then M​2​ accepts 
5.     Else, M​2​ rejects 
6. Else, M​2​ reject 

 
M​2​ accepts U. 
First, it runs M​1​ on ⟨M, x⟩. 
If M​1​ accepts, meaning that it halts on ⟨M, x⟩, then we run M​u​ on ⟨M, x⟩. 
If M​u​ accepts ⟨M, x⟩, then M​2​ accepts ⟨M, x⟩. 
If M​u​ doesn’t accept ⟨M, x⟩, then M​2​ rejects ⟨M, x⟩. 
If M​1​ doesn’t accept ⟨M, x⟩, that means M​1​ doesn’t halt on ⟨M, x⟩, so M​2​ rejects ⟨M, x⟩. 
 
However, we proved in theorem 3.5 that U is not decidable, so M​2​ doesn’t exist.  
Since M​2​ relies on the existence of M​1​, therefore, M​1​ doesn’t exist. 
Therefore, H is undecidable. 
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Here’s a diagram of the proof: 

 
 
Alternative Proof of b): 
Given an H-decider M​3​, we can construct a U-decider M​4​ as follows: 
M​4​ on input ⟨M, x⟩ does the following: 

1. Modify M to M’ by changing every transition of M to the reject state into an infinite 
loop. 
We know that M either accepts, rejects or loops on x. 
If M accepts x, then M’ accepts x. 
If M rejects or loops on x, then M’ loops on x. 

2. Run M​3​ on ⟨M’, x⟩. 
3. If M​3​ accepts, then M​4​ accepts. 
4. Else, M​4​ rejects. 

 
M​4​ accepts ⟨M, x⟩ 
↔  M 3​ accepts ⟨M’, x⟩ 
↔  M’ halts on x 
↔  M accepts x  
Therefore, M​4​ is a U-decider. 
However, this contradicts theorem 3.5, which says that U is not decidable. 
Therefore, we could not have been given an M​3​ that solves the halting problem. 
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Here’s a diagram of the proof: 

 
- Corollary 4.2:​ ㄱH, the complement of H, is unrecognizable. 
ㄱH = {⟨M, x⟩ | M doesn’t halt on x} 
 
Proof: 
Suppose by contradiction that ㄱH is recognizable. 
Recall theorem 3.6 “If L and ㄱL, the complement of L, are both recognizable, then L and 
ㄱL are decidable.” 
Since both H and ㄱH are recognizable, then both H and ㄱH are decidable. 
However, we know that H is not decidable, which is a contradiction. 
Hence, ㄱH is unrecognizable. 

- If X ≤ Y and X is undecidable, then Y is also undecidable.  
However, if X ≤ Y and Y is undecidable, it doesn’t tell us if X is undecidable or not. 
Note:​ The direction in which we are reducing things is very important. 
E.g. 
When we did U ≤ H, since we knew that U is undecidable, we could prove that H is 
undecidable. 
However, if we did H ≤ U, we know that U is undecidable, but we don’t know if H is 
undecidable. We can’t use this to prove that H is undecidable. 

- If X ≤ Y and Y is decidable, then X is also decidable.  
Mapping Reductions: 

- Definition:​ Let P and Q ⊆ Σ​*​ be languages. P is ​mapping-reducible​ to Q, denoted as  
P ≤​m​ Q, iff there exists a computable function, f : Σ​*​ → Σ​*​, such that x ∈ P iff f(x) ∈ Q. 
Note:​ The function, f, does not have to be, and is usually not, onto. 
Note: ​The function, f, must be computable. 
To demonstrate a computable function, we will typically write a little program or describe 
in English how to perform the transformation that f is supposed to do. 
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Note:​ f maps yes-instances of P to yes-instances of Q and no-instances of P to 
no-instances of Q. 
Here is a diagram to show the definition of mapping-reducible: 

 
Here, f maps the Yes-instances of P to a subset of the Yes-instances of Q and maps the 
No-instances of P to a subset of the No-instances of Q. 

- E.g. Suppose that 
A = {x | x is an even integer} 
B = {x | x is an odd integer} 
Then the function f(x) = x + 1 is a mapping reduction from A to B.  
Notice that: 
x ∈ A ↔  x is even 
         ↔  x + 1 is odd 
         ↔  x + 1 ∈ B 
         ↔  f(x) ∈ B 

- All the reductions we’ve seen so far, with one exception, are mapping reductions. 
1. First Reduction: Reduced ㄱD (D complement) to U (Universal language) 
- ㄱD = {⟨M⟩ | M accepts ⟨M⟩} 
- f: ⟨M⟩ → ⟨M, ⟨M⟩⟩ 

Here is a description of f: 
- Take the encoding of M. 
- Make a pair of itself and another encoding of M in the following way: 

⟨M⟩###⟨M⟩ (The ### is used as a separator.) 
2. Second Reduction: Reduce U to H (The Halting Problem) 
- Note:​ This is for the “Alternative Proof of b)” 
- Given ⟨M, x⟩ we constructed ⟨M’, x⟩ such that M accepts x iff M’ halts on x. 

M accepts x simply means ⟨M, x⟩∈U and M’ halts on x simply means ⟨M’, x⟩∈H. 
So, I mapped ⟨M, x⟩ to ⟨M’, x⟩ such that Yes-instances go to Yes-instances and 
No-instances go to No-instances. 

- Note:​ The first proof we did to prove that U reduces to H is not a mapping 
reduction. The difference between the first and second proof is that with the first 
proof, we’re taking the input, ⟨M, x⟩, and running it through 2 “black boxes”, M​1 
and M​u​. Furthermore, after running the input through the first “black box”, M​1​, 
there’s a possibility that we’re changing its output by running the output through 
the second “black box”, M​u​. 
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With the second proof, we’re transforming ⟨M, x⟩ to ⟨M’, x⟩, this is our function, 
and we’re only running it through 1 TM, M​3​. In the second proof, we’re using M​3​ in 
a very restricted way. We are only making 1 call to the “black box” and we’re 
using the output of the “black box” as it is, we can’t change it. 

- Hence, the first proof is a ​Turing reduction​ while the second proof is a ​mapping 
reduction​. 

- Theorem 4.3:​ Suppose that P ≤​m​ Q. If Q is decidable, then P is decidable. If P is 
undecidable, then Q is undecidable. 
 
Proof of “If P is undecidable, then Q is undecidable”: 
Assume that P ≤​m​ Q and P is undecidable. 
Suppose for contradiction that Q is decidable. 
Let D​Q​ be a decider for Q. 
Since P ≤​m​ Q, there exists a computable function, f, such that x ∈ P iff f(x) ∈ Q. 
Then, the following algorithm is a decider for P: 
D​P​ on input “x” does the following: 

1. Computes f(x)  
2. Run D​Q​ on f(x). 
3. If D​Q​ accepts, then D​P​ accepts. 
4. Else, D​P​ rejects. 

D​P​ halts on all inputs, so it’s a decider.  
D​P​ decides P because it accepts x iff D​Q​ accepts f(x). 
D​Q​ accepts f(x) iff f(x) ∈ Q, because D​Q​ is a decider for Q. 
f(x) ∈ Q iff x ∈ P, because f is a mapping reduction of P to Q. 
However, this contradicts our supposition that P is undecidable. 
Hence, Q is undecidable. 

- Theorem 4.4:​ If P ≤​m​ Q and Q is recognizable, then P is recognizable. If P is 
unrecognizable, then Q is unrecognizable. 

- Theorem 4.5:​ If P ≤​m​ Q, then ㄱP ≤​m​ ㄱQ, where ㄱP is the complement of P and ㄱQ is 
the complement of Q. 
 
Proof: 
Consider the diagram below. 
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We know that f maps the Yes-instances of P to the Yes-instances of Q and the 
No-instances of P to the No-instances of Q.  
However,  

- The No-instances of P are the same as the Yes-instances of ㄱP. 
- The No-instances of Q are the same as the Yes-instances of ㄱQ. 
- The Yes-instances of P are the same as the No-instances of ㄱP. 
- The Yes-instances of Q are the same as the No-instances of ㄱQ. 

Hence, we can use the same function, f, as the computable function for ㄱP ≤​m​ ㄱQ. 
- Theorem 4.6:​ If P ≤​m​ Q and Q ≤​m​ R, then P ≤​m​ R. 

Examples of Reductions: 
- To prove that a language P is unrecognizable or undecidable, it suffices to prove that  

U ≤​m​ P, for undecidable, and ㄱU ≤​m​ P, for unrecognizable. This is by theorem 4.3 and 
3.4. 

- Theorem 4.7:​ Consider the following language, E = {⟨M⟩ | L(m) = Ø}. E is 
unrecognizable. 
 
Proof: 
It suffices to prove that ㄱU ≤​m​ E. 
Given ⟨M,x⟩, which is the input to ㄱU, we want to construct ⟨M’⟩, which is the input to E, 
such that M does not accept x iff L(M’) = Ø. 
I.e. ⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E. 
We can build M’ such that if M doesn’t accept x, M’ accepts no string, and if M accepts x, 
M’ accepts every string. 
f on input ⟨M,x⟩ does the following: 

1. Define a machine M’ that does the following on input y: 
a. Run M on x 
b. If M accepts, then M’ accepts y.  
c. Else, M’ rejects y. 

2. Return ⟨M’⟩ 
 
Here’s a diagram showcasing the proof. 

 
If M does not accept x, then L(M’) = Ø. 
If M accepts x, then L(M’) = Σ​*​. 
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Claim: f is a mapping reduction of ㄱU to E. 
Proof: 
To prove that f is a mapping reduction of ㄱU to E, we need to verify that 
⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E. 
(=>) If ⟨M,x⟩ ∈ ㄱU 
→ M does not accept x. (M either loops on x or M rejects x.) 
→ M’ accepts no input. 
→ L(M’) = Ø 
→ ⟨M’⟩ ∈ E 
 
(<=) If ⟨M,x⟩ ∉ ㄱU 
→ M accepts x. 
→ M’ accepts all inputs. 
→ L(M’) = ∑​*​ ≠ Ø 
→ ⟨M’⟩ ∉ E 

- Theorem 4.8:​ ㄱE, the complement of E, is 
a. undecidable, but 
b. recognizable 

ㄱE = {⟨M⟩| L(M) ≠ Ø} 
 
Proof of a): 
Suppose for contradiction that ㄱE is decidable. 
Then, based on theorem 3.3, which states that  
“If L is a decidable language, then its complement is also decidable.  
I.e. The set of decidable languages is closed under complementation.”,  
then E is also decidable. 
However, we just proved in theorem 4.7 that E is undecidable, which is a contradiction. 
Hence, ㄱE is undecidable. 
 
Proof of b): 
The idea is to dovetail through all pairs (i,j). When visiting pair (i,j), run M on the i​th​ input 
for j steps. If it accepts, then we accept. Otherwise, visit the next pair. 
If M doesn’t accept or reject the i​th​ input for j steps, we simply continue the dovetailing 
process. This is fine because as a recognizer, it doesn’t need to halt. 
Note:​ The reason why you can’t simply go down each input is because there might be 
an input that loops forever. Then, your machine would be stuck. 
 
Another Proof of b): 
A NTM recognizes ㄱE on input ⟨M⟩ as follows: 

1. Nondeterministically guess a string x. 
2. Use M​u​, the universal TM, to run M on x. 
3. If M accepts, accept. 
4. Since there’s a NTM that recognizes ㄱE, there’s also a TM that recognizes ㄱE. 
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- Theorem 4.9:​ Consider the following language, REG = {⟨M⟩ | L(M) is regular}. REG is 
undecidable. 
 
Proof: 
It suffices to prove that U ≤​M​ REG. 
Given an input, ⟨M, x⟩ to U, we want to construct a machine ⟨M’⟩, which is an input to 
REG such that M accepts x iff L(M’) is regular. 
If M accepts x, then M’ accepts a regular language. 
If M does not accept x, then M does not accept a regular language. 
f on input ⟨M, x⟩ does the following: 

1. Define M’ which on input y does the following: 
a. If y=0​n​1​n​, then accept 
b. Else, run M on x. 
c. If M accepts x, then M’ accepts y. 
d. Else, M’ rejects y. 

2. Return ⟨M’⟩ 
 
Now, we need to verify that ⟨M, x⟩ ∈ U iff ⟨M’⟩ ∈ REG. 
(=>) 
If ⟨M, x⟩ ∈ U then 
→ M accepts x. 
→ M’ accepts all inputs y. It does this in either line 1a. or line 1c. otherwise. 
→ L(M’) = ∑​*​. 
→ ⟨M’⟩ ∈ REG. 
 
(<=) 
If ⟨M, x⟩ ∉ U then 
→ M does not accept x. 
→ M’ accepts all and only strings of the form 0​n​1​n​. 
→ L(M’) is not regular. 
→ ⟨M’⟩ ∉ REG. 
We have shown that U ≤​M​ REG, so REG is undecidable. 
 
Note:​ Since U ≤​M​ REG, ㄱU ≤​M​ ㄱREG. This is by theorem 4.5. 
Since ㄱU ≤​M​ ㄱREG, ㄱREG is unrecognizable. 
Note:​ U ≤​M​ ㄱREG, which means that ㄱU ≤​M​ REG. 
Since ㄱU ≤​M​ REG, REG is unrecognizable. 
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Picture of Recognizable and Decidable Languages: 

 
 


