
CSCC63 Week 4 Notes
1

General Turing Reductions:
- P ​Turing reduces​ to Q if there exists an algorithm for P that uses an algorithm for Q as

a “black box”. This is denoted as P ≤​T​ Q.
Halting Problem:

- Denoted as H.
- H = {⟨M, x⟩ | TM M halts on input x}

H accepts the encodings of M and x if M halts on x, and rejects the encodings otherwise.
- Theorem 4.1:​ H is

a. recognizable but
b. not decidable.

Proof of a):
Use M​u​ to simulate M on input x.
If M​u​ halts (either accepts or rejects), then we say yes.
If M​u​ doesn’t halt, then it’s fine because H is a recognizer, not a decider.

Proof of b):
We will show that U ≤ H.
U is the universal language. In theorem 3.5, we proved that U is recognizable but not
decidable.
Given an H-decider TM M​1​, we will construct a U-decider TM M​2​.
M​2​ on input ⟨M, x⟩ does the following:

1. Run M​1​ on ⟨M, x⟩
2. If M​1​ accepts, then
3. Run M​u​ on ⟨M, x⟩
4. If M​u​ accepts ⟨M, x⟩, then M​2​ accepts
5. Else, M​2​ rejects
6. Else, M​2​ reject

M​2​ accepts U.
First, it runs M​1​ on ⟨M, x⟩.
If M​1​ accepts, meaning that it halts on ⟨M, x⟩, then we run M​u​ on ⟨M, x⟩.
If M​u​ accepts ⟨M, x⟩, then M​2​ accepts ⟨M, x⟩.
If M​u​ doesn’t accept ⟨M, x⟩, then M​2​ rejects ⟨M, x⟩.
If M​1​ doesn’t accept ⟨M, x⟩, that means M​1​ doesn’t halt on ⟨M, x⟩, so M​2​ rejects ⟨M, x⟩.

However, we proved in theorem 3.5 that U is not decidable, so M​2​ doesn’t exist.
Since M​2​ relies on the existence of M​1​, therefore, M​1​ doesn’t exist.
Therefore, H is undecidable.

CSCC63 Week 4 Notes
2

Here’s a diagram of the proof:

Alternative Proof of b):
Given an H-decider M​3​, we can construct a U-decider M​4​ as follows:
M​4​ on input ⟨M, x⟩ does the following:

1. Modify M to M’ by changing every transition of M to the reject state into an infinite
loop.
We know that M either accepts, rejects or loops on x.
If M accepts x, then M’ accepts x.
If M rejects or loops on x, then M’ loops on x.

2. Run M​3​ on ⟨M’, x⟩.
3. If M​3​ accepts, then M​4​ accepts.
4. Else, M​4​ rejects.

M​4​ accepts ⟨M, x⟩
↔ M 3​ accepts ⟨M’, x⟩
↔ M’ halts on x
↔ M accepts x
Therefore, M​4​ is a U-decider.
However, this contradicts theorem 3.5, which says that U is not decidable.
Therefore, we could not have been given an M​3​ that solves the halting problem.

CSCC63 Week 4 Notes
3

Here’s a diagram of the proof:

- Corollary 4.2:​ ㄱH, the complement of H, is unrecognizable.
ㄱH = {⟨M, x⟩ | M doesn’t halt on x}

Proof:
Suppose by contradiction that ㄱH is recognizable.
Recall theorem 3.6 “If L and ㄱL, the complement of L, are both recognizable, then L and
ㄱL are decidable.”
Since both H and ㄱH are recognizable, then both H and ㄱH are decidable.
However, we know that H is not decidable, which is a contradiction.
Hence, ㄱH is unrecognizable.

- If X ≤ Y and X is undecidable, then Y is also undecidable.
However, if X ≤ Y and Y is undecidable, it doesn’t tell us if X is undecidable or not.
Note:​ The direction in which we are reducing things is very important.
E.g.
When we did U ≤ H, since we knew that U is undecidable, we could prove that H is
undecidable.
However, if we did H ≤ U, we know that U is undecidable, but we don’t know if H is
undecidable. We can’t use this to prove that H is undecidable.

- If X ≤ Y and Y is decidable, then X is also decidable.
Mapping Reductions:

- Definition:​ Let P and Q ⊆ Σ​*​ be languages. P is ​mapping-reducible​ to Q, denoted as
P ≤​m​ Q, iff there exists a computable function, f : Σ​*​ → Σ​*​, such that x ∈ P iff f(x) ∈ Q.
Note:​ The function, f, does not have to be, and is usually not, onto.
Note: ​The function, f, must be computable.
To demonstrate a computable function, we will typically write a little program or describe
in English how to perform the transformation that f is supposed to do.

CSCC63 Week 4 Notes
4

Note:​ f maps yes-instances of P to yes-instances of Q and no-instances of P to
no-instances of Q.
Here is a diagram to show the definition of mapping-reducible:

Here, f maps the Yes-instances of P to a subset of the Yes-instances of Q and maps the
No-instances of P to a subset of the No-instances of Q.

- E.g. Suppose that
A = {x | x is an even integer}
B = {x | x is an odd integer}
Then the function f(x) = x + 1 is a mapping reduction from A to B.
Notice that:
x ∈ A ↔ x is even
 ↔ x + 1 is odd
 ↔ x + 1 ∈ B
 ↔ f(x) ∈ B

- All the reductions we’ve seen so far, with one exception, are mapping reductions.
1. First Reduction: Reduced ㄱD (D complement) to U (Universal language)
- ㄱD = {⟨M⟩ | M accepts ⟨M⟩}
- f: ⟨M⟩ → ⟨M, ⟨M⟩⟩

Here is a description of f:
- Take the encoding of M.
- Make a pair of itself and another encoding of M in the following way:

⟨M⟩###⟨M⟩ (The ### is used as a separator.)
2. Second Reduction: Reduce U to H (The Halting Problem)
- Note:​ This is for the “Alternative Proof of b)”
- Given ⟨M, x⟩ we constructed ⟨M’, x⟩ such that M accepts x iff M’ halts on x.

M accepts x simply means ⟨M, x⟩∈U and M’ halts on x simply means ⟨M’, x⟩∈H.
So, I mapped ⟨M, x⟩ to ⟨M’, x⟩ such that Yes-instances go to Yes-instances and
No-instances go to No-instances.

- Note:​ The first proof we did to prove that U reduces to H is not a mapping
reduction. The difference between the first and second proof is that with the first
proof, we’re taking the input, ⟨M, x⟩, and running it through 2 “black boxes”, M​1
and M​u​. Furthermore, after running the input through the first “black box”, M​1​,
there’s a possibility that we’re changing its output by running the output through
the second “black box”, M​u​.

CSCC63 Week 4 Notes
5

With the second proof, we’re transforming ⟨M, x⟩ to ⟨M’, x⟩, this is our function,
and we’re only running it through 1 TM, M​3​. In the second proof, we’re using M​3​ in
a very restricted way. We are only making 1 call to the “black box” and we’re
using the output of the “black box” as it is, we can’t change it.

- Hence, the first proof is a ​Turing reduction​ while the second proof is a ​mapping
reduction​.

- Theorem 4.3:​ Suppose that P ≤​m​ Q. If Q is decidable, then P is decidable. If P is
undecidable, then Q is undecidable.

Proof of “If P is undecidable, then Q is undecidable”:
Assume that P ≤​m​ Q and P is undecidable.
Suppose for contradiction that Q is decidable.
Let D​Q​ be a decider for Q.
Since P ≤​m​ Q, there exists a computable function, f, such that x ∈ P iff f(x) ∈ Q.
Then, the following algorithm is a decider for P:
D​P​ on input “x” does the following:

1. Computes f(x)
2. Run D​Q​ on f(x).
3. If D​Q​ accepts, then D​P​ accepts.
4. Else, D​P​ rejects.

D​P​ halts on all inputs, so it’s a decider.
D​P​ decides P because it accepts x iff D​Q​ accepts f(x).
D​Q​ accepts f(x) iff f(x) ∈ Q, because D​Q​ is a decider for Q.
f(x) ∈ Q iff x ∈ P, because f is a mapping reduction of P to Q.
However, this contradicts our supposition that P is undecidable.
Hence, Q is undecidable.

- Theorem 4.4:​ If P ≤​m​ Q and Q is recognizable, then P is recognizable. If P is
unrecognizable, then Q is unrecognizable.

- Theorem 4.5:​ If P ≤​m​ Q, then ㄱP ≤​m​ ㄱQ, where ㄱP is the complement of P and ㄱQ is
the complement of Q.

Proof:
Consider the diagram below.

CSCC63 Week 4 Notes
6

We know that f maps the Yes-instances of P to the Yes-instances of Q and the
No-instances of P to the No-instances of Q.
However,

- The No-instances of P are the same as the Yes-instances of ㄱP.
- The No-instances of Q are the same as the Yes-instances of ㄱQ.
- The Yes-instances of P are the same as the No-instances of ㄱP.
- The Yes-instances of Q are the same as the No-instances of ㄱQ.

Hence, we can use the same function, f, as the computable function for ㄱP ≤​m​ ㄱQ.
- Theorem 4.6:​ If P ≤​m​ Q and Q ≤​m​ R, then P ≤​m​ R.

Examples of Reductions:
- To prove that a language P is unrecognizable or undecidable, it suffices to prove that

U ≤​m​ P, for undecidable, and ㄱU ≤​m​ P, for unrecognizable. This is by theorem 4.3 and
3.4.

- Theorem 4.7:​ Consider the following language, E = {⟨M⟩ | L(m) = Ø}. E is
unrecognizable.

Proof:
It suffices to prove that ㄱU ≤​m​ E.
Given ⟨M,x⟩, which is the input to ㄱU, we want to construct ⟨M’⟩, which is the input to E,
such that M does not accept x iff L(M’) = Ø.
I.e. ⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E.
We can build M’ such that if M doesn’t accept x, M’ accepts no string, and if M accepts x,
M’ accepts every string.
f on input ⟨M,x⟩ does the following:

1. Define a machine M’ that does the following on input y:
a. Run M on x
b. If M accepts, then M’ accepts y.
c. Else, M’ rejects y.

2. Return ⟨M’⟩

Here’s a diagram showcasing the proof.

If M does not accept x, then L(M’) = Ø.
If M accepts x, then L(M’) = Σ​*​.

CSCC63 Week 4 Notes
7

Claim: f is a mapping reduction of ㄱU to E.
Proof:
To prove that f is a mapping reduction of ㄱU to E, we need to verify that
⟨M,x⟩ ∈ ㄱU iff ⟨M’⟩ ∈ E.
(=>) If ⟨M,x⟩ ∈ ㄱU
→ M does not accept x. (M either loops on x or M rejects x.)
→ M’ accepts no input.
→ L(M’) = Ø
→ ⟨M’⟩ ∈ E

(<=) If ⟨M,x⟩ ∉ ㄱU
→ M accepts x.
→ M’ accepts all inputs.
→ L(M’) = ∑​*​ ≠ Ø
→ ⟨M’⟩ ∉ E

- Theorem 4.8:​ ㄱE, the complement of E, is
a. undecidable, but
b. recognizable

ㄱE = {⟨M⟩| L(M) ≠ Ø}

Proof of a):
Suppose for contradiction that ㄱE is decidable.
Then, based on theorem 3.3, which states that
“If L is a decidable language, then its complement is also decidable.
I.e. The set of decidable languages is closed under complementation.”,
then E is also decidable.
However, we just proved in theorem 4.7 that E is undecidable, which is a contradiction.
Hence, ㄱE is undecidable.

Proof of b):
The idea is to dovetail through all pairs (i,j). When visiting pair (i,j), run M on the i​th​ input
for j steps. If it accepts, then we accept. Otherwise, visit the next pair.
If M doesn’t accept or reject the i​th​ input for j steps, we simply continue the dovetailing
process. This is fine because as a recognizer, it doesn’t need to halt.
Note:​ The reason why you can’t simply go down each input is because there might be
an input that loops forever. Then, your machine would be stuck.

Another Proof of b):
A NTM recognizes ㄱE on input ⟨M⟩ as follows:

1. Nondeterministically guess a string x.
2. Use M​u​, the universal TM, to run M on x.
3. If M accepts, accept.
4. Since there’s a NTM that recognizes ㄱE, there’s also a TM that recognizes ㄱE.

CSCC63 Week 4 Notes
8

- Theorem 4.9:​ Consider the following language, REG = {⟨M⟩ | L(M) is regular}. REG is
undecidable.

Proof:
It suffices to prove that U ≤​M​ REG.
Given an input, ⟨M, x⟩ to U, we want to construct a machine ⟨M’⟩, which is an input to
REG such that M accepts x iff L(M’) is regular.
If M accepts x, then M’ accepts a regular language.
If M does not accept x, then M does not accept a regular language.
f on input ⟨M, x⟩ does the following:

1. Define M’ which on input y does the following:
a. If y=0​n​1​n​, then accept
b. Else, run M on x.
c. If M accepts x, then M’ accepts y.
d. Else, M’ rejects y.

2. Return ⟨M’⟩

Now, we need to verify that ⟨M, x⟩ ∈ U iff ⟨M’⟩ ∈ REG.
(=>)
If ⟨M, x⟩ ∈ U then
→ M accepts x.
→ M’ accepts all inputs y. It does this in either line 1a. or line 1c. otherwise.
→ L(M’) = ∑​*​.
→ ⟨M’⟩ ∈ REG.

(<=)
If ⟨M, x⟩ ∉ U then
→ M does not accept x.
→ M’ accepts all and only strings of the form 0​n​1​n​.
→ L(M’) is not regular.
→ ⟨M’⟩ ∉ REG.
We have shown that U ≤​M​ REG, so REG is undecidable.

Note:​ Since U ≤​M​ REG, ㄱU ≤​M​ ㄱREG. This is by theorem 4.5.
Since ㄱU ≤​M​ ㄱREG, ㄱREG is unrecognizable.
Note:​ U ≤​M​ ㄱREG, which means that ㄱU ≤​M​ REG.
Since ㄱU ≤​M​ REG, REG is unrecognizable.

CSCC63 Week 4 Notes
9

Picture of Recognizable and Decidable Languages:

