General Turing Reductions:

 P Turing reduces to Q if there exists an algorithm for P that uses an algorithm for Q as a "black box". This is denoted as P ≤_T Q.

Halting Problem:

- Denoted as H.
- H = {(M, x) | TM M halts on input x}
 H accepts the encodings of M and x if M halts on x, and rejects the encodings otherwise.
- Theorem 4.1: H is
 - a. recognizable but
 - b. not decidable.

Proof of a):

Use M_u to simulate M on input x.

If M_u halts (either accepts or rejects), then we say yes.

If M_u doesn't halt, then it's fine because H is a recognizer, not a decider.

Proof of b):

We will show that $U \leq H$.

U is the universal language. In theorem 3.5, we proved that U is recognizable but not decidable.

Given an H-decider TM M₁, we will construct a U-decider TM M₂.

 M_2 on input $\langle M, x \rangle$ does the following:

- 1. Run M_1 on $\langle M, x \rangle$
- 2. If M_1 accepts, then
- 3. Run M_u on $\langle M, x \rangle$
- 4. If M_u accepts $\langle M, x \rangle$, then M_2 accepts
- 5. Else, M_2 rejects
- 6. Else, M₂ reject

 M_2 accepts U.

First, it runs M_1 on $\langle M, x \rangle$.

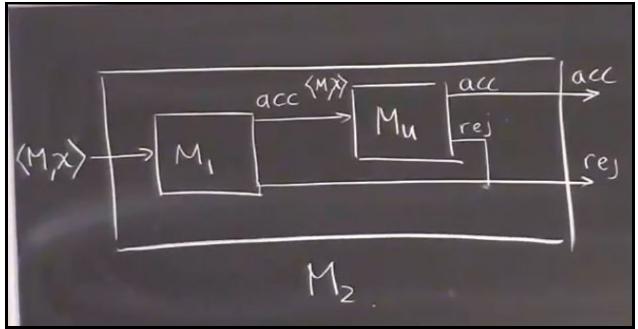
If M_1 accepts, meaning that it halts on $\langle M, x \rangle$, then we run M_u on $\langle M, x \rangle$.

If M_u accepts $\langle M, x \rangle$, then M_2 accepts $\langle M, x \rangle$.

If M_u doesn't accept $\langle M, x \rangle$, then M_2 rejects $\langle M, x \rangle$.

If M_1 doesn't accept $\langle M, x \rangle$, that means M_1 doesn't halt on $\langle M, x \rangle$, so M_2 rejects $\langle M, x \rangle$.

However, we proved in theorem 3.5 that U is not decidable, so M_2 doesn't exist. Since M_2 relies on the existence of M_1 , therefore, M_1 doesn't exist. Therefore, H is undecidable.



Alternative Proof of b):

Given an H-decider M_3 , we can construct a U-decider M_4 as follows:

 M_4 on input $\langle M, x \rangle$ does the following:

1. Modify M to M' by changing every transition of M to the reject state into an infinite loop.

We know that M either accepts, rejects or loops on x.

If M accepts x, then M' accepts x.

If M rejects or loops on x, then M' loops on x.

- 2. Run M_3 on $\langle M', x \rangle$.
- 3. If M_3 accepts, then M_4 accepts.
- 4. Else, M₄ rejects.

 M_4 accepts $\langle M, x \rangle$

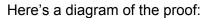
- \leftrightarrow M₃ accepts \langle M', x \rangle
- $\leftrightarrow M'$ halts on x

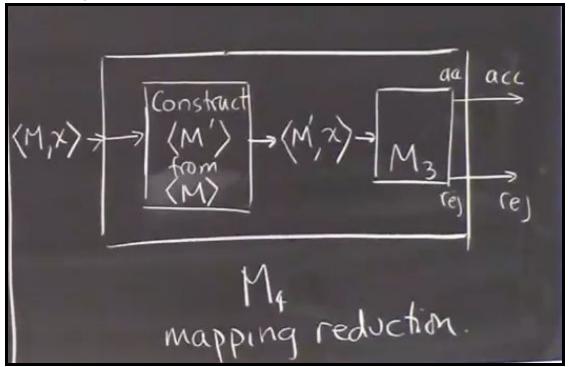
 \leftrightarrow M accepts x

Therefore, M_4 is a U-decider.

However, this contradicts theorem 3.5, which says that U is not decidable.

Therefore, we could not have been given an M_3 that solves the halting problem.





- **Corollary 4.2:** \neg H, the complement of H, is unrecognizable. \neg H = { \langle M, x \rangle | M doesn't halt on x}

Proof:

Suppose by contradiction that $\neg H$ is recognizable.

Recall theorem 3.6 "If L and \neg L, the complement of L, are both recognizable, then L and \neg L are decidable."

Since both H and \neg H are recognizable, then both H and \neg H are decidable. However, we know that H is not decidable, which is a contradiction. Hence, \neg H is unrecognizable.

If $X \le Y$ and X is undecidable. then Y is also undecidable.

However, if $X \le Y$ and Y is undecidable, it doesn't tell us if X is undecidable or not. Note: The direction in which we are reducing things is very important.

E.g.

When we did $U \le H$, since we knew that U is undecidable, we could prove that H is undecidable.

However, if we did $H \le U$, we know that U is undecidable, but we don't know if H is undecidable. We can't use this to prove that H is undecidable.

If $X \leq Y$ and Y is decidable, then X is also decidable.

Mapping Reductions:

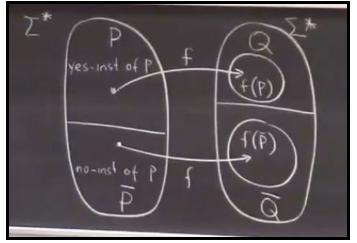
Definition: Let P and Q ⊆ Σ^{*} be languages. P is mapping-reducible to Q, denoted as P ≤_m Q, iff there exists a computable function, f : Σ^{*} → Σ^{*}, such that x ∈ P iff f(x) ∈ Q.
 Note: The function, f, does not have to be, and is usually not, onto.

Note: The function, f, must be computable.

To demonstrate a computable function, we will typically write a little program or describe in English how to perform the transformation that f is supposed to do.

Note: f maps yes-instances of P to yes-instances of Q and no-instances of P to no-instances of Q.

Here is a diagram to show the definition of mapping-reducible:



Here, f maps the Yes-instances of P to a subset of the Yes-instances of Q and maps the No-instances of P to a subset of the No-instances of Q.

- E.g. Suppose that
 - $A = \{x \mid x \text{ is an even integer}\}$
 - $B = \{x \mid x \text{ is an odd integer}\}$

Then the function f(x) = x + 1 is a mapping reduction from A to B.

Notice that:

- $x \in A \leftrightarrow x$ is even
 - $\leftrightarrow x + 1 \text{ is odd}$
 - $\leftrightarrow x + 1 \in B$
 - $\leftrightarrow f(x) \in B$
- All the reductions we've seen so far, with one exception, are mapping reductions.
 - 1. First Reduction: Reduced ¬D (D complement) to U (Universal language)
 - $\neg D = \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle \}$
 - f: $\langle M \rangle \rightarrow \langle M, \langle M \rangle \rangle$
 - Here is a description of f:
 - Take the encoding of M.
 - Make a pair of itself and another encoding of M in the following way:
 (M)###(M) (The ### is used as a separator.)
 - 2. Second Reduction: Reduce U to H (The Halting Problem)
 - Note: This is for the "Alternative Proof of b)"
 - Given ⟨M, x⟩ we constructed ⟨M', x⟩ such that M accepts x iff M' halts on x.
 M accepts x simply means ⟨M, x⟩∈U and M' halts on x simply means ⟨M', x⟩∈H.
 So, I mapped ⟨M, x⟩ to ⟨M', x⟩ such that Yes-instances go to Yes-instances and No-instances go to No-instances.
 - Note: The first proof we did to prove that U reduces to H is not a mapping reduction. The difference between the first and second proof is that with the first proof, we're taking the input, (M, x), and running it through 2 "black boxes", M₁ and M_u. Furthermore, after running the input through the first "black box", M₁, there's a possibility that we're changing its output by running the output through the second "black box", M_u.

With the second proof, we're transforming $\langle M, x \rangle$ to $\langle M', x \rangle$, this is our function, and we're only running it through 1 TM, M₃. In the second proof, we're using M₃ in a very restricted way. We are only making 1 call to the "black box" and we're using the output of the "black box" as it is, we can't change it.

- Hence, the first proof is a **Turing reduction** while the second proof is a **mapping reduction**.
- **Theorem 4.3:** Suppose that $P \leq_m Q$. If Q is decidable, then P is decidable. If P is undecidable, then Q is undecidable.

Proof of "If P is undecidable, then Q is undecidable":

Assume that $P \leq_m Q$ and P is undecidable.

Suppose for contradiction that Q is decidable.

Let D_{Q} be a decider for Q.

Since $P \leq_m Q$, there exists a computable function, f, such that $x \in P$ iff $f(x) \in Q$. Then, the following algorithm is a decider for P:

 D_P on input "x" does the following:

- 1. Computes f(x)
- 2. Run D_{o} on f(x).
- 3. If D_Q accepts, then D_P accepts.
- 4. Else, D_P rejects.

 D_P halts on all inputs, so it's a decider.

 D_P decides P because it accepts x iff D_Q accepts f(x).

 D_{Q} accepts f(x) iff $f(x) \in Q$, because D_{Q} is a decider for Q.

 $f(x) \in Q$ iff $x \in P$, because f is a mapping reduction of P to Q.

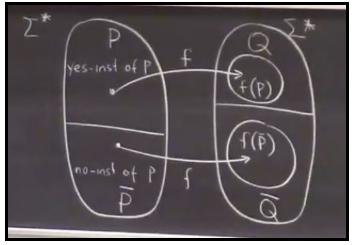
However, this contradicts our supposition that P is undecidable.

Hence, Q is undecidable.

- **Theorem 4.4:** If $P \leq_m Q$ and Q is recognizable, then P is recognizable. If P is unrecognizable, then Q is unrecognizable.
- **Theorem 4.5:** If $P \leq_m Q$, then $\neg P \leq_m \neg Q$, where $\neg P$ is the complement of P and $\neg Q$ is the complement of Q.

Proof:

Consider the diagram below.



We know that f maps the Yes-instances of P to the Yes-instances of Q and the No-instances of P to the No-instances of Q. However.

- The No-instances of P are the same as the Yes-instances of $\neg P$.
- The No-instances of Q are the same as the Yes-instances of $\neg Q$.
- The Yes-instances of P are the same as the No-instances of $\neg P$.
- The Yes-instances of Q are the same as the No-instances of $\neg Q$.

Hence, we can use the same function, f, as the computable function for $\neg P \leq_m \neg Q$.

- **Theorem 4.6:** If $P \leq_m Q$ and $Q \leq_m R$, then $P \leq_m R$.

Examples of Reductions:

- To prove that a language P is unrecognizable or undecidable, it suffices to prove that $U \leq_m P$, for undecidable, and $\neg U \leq_m P$, for unrecognizable. This is by theorem 4.3 and 3.4.
- **Theorem 4.7:** Consider the following language, $E = \{\langle M \rangle \mid L(m) = \emptyset\}$. E is unrecognizable.

Proof:

It suffices to prove that $\neg U \leq_m E$.

Given $\langle M, x \rangle$, which is the input to $\neg U$, we want to construct $\langle M' \rangle$, which is the input to E, such that M does not accept x iff L(M') = Ø.

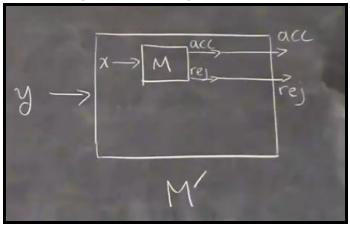
I.e. $\langle M, x \rangle \in \neg U$ iff $\langle M' \rangle \in E$.

We can build M' such that if M doesn't accept x, M' accepts no string, and if M accepts x, M' accepts every string.

f on input $\langle M, x \rangle$ does the following:

- 1. Define a machine M' that does the following on input y:
 - a. Run M on x
 - b. If M accepts, then M' accepts y.
 - c. Else, M' rejects y.
- 2. Return $\langle M' \rangle$

Here's a diagram showcasing the proof.



If M does not accept x, then $L(M') = \emptyset$. If M accepts x, then $L(M') = \Sigma^*$. Claim: f is a mapping reduction of $\neg U$ to E. Proof: To prove that f is a mapping reduction of $\neg U$ to E, we need to verify that $\langle M,x \rangle \in \neg U$ iff $\langle M' \rangle \in E$. (=>) If $\langle M,x \rangle \in \neg U$ \rightarrow M does not accept x. (M either loops on x or M rejects x.) \rightarrow M' accepts no input. $\rightarrow L(M') = \emptyset$ $\rightarrow \langle M' \rangle \in E$

(<=) If $\langle M, x \rangle \in \neg U$

 \rightarrow M accepts x.

 \rightarrow M' accepts all inputs.

$$\rightarrow$$
 L(M') = $\sum_{i=1}^{k} \neq \emptyset$

 $\rightarrow \langle \mathsf{M}' \rangle \in \mathsf{E}$

- **Theorem 4.8:** $\neg E$, the complement of E, is

- a. undecidable, but
- b. recognizable

 $\neg \mathsf{E} = \{ \langle \mathsf{M} \rangle | \ \mathsf{L}(\mathsf{M}) \neq \emptyset \}$

Proof of a):

Suppose for contradiction that $\neg E$ is decidable.

Then, based on theorem 3.3, which states that

"If L is a decidable language, then its complement is also decidable.

I.e. The set of decidable languages is closed under complementation.",

then E is also decidable.

However, we just proved in theorem 4.7 that E is undecidable, which is a contradiction. Hence, $\neg E$ is undecidable.

Proof of b):

The idea is to dovetail through all pairs (i,j). When visiting pair (i,j), run M on the ith input for j steps. If it accepts, then we accept. Otherwise, visit the next pair.

If M doesn't accept or reject the ith input for j steps, we simply continue the dovetailing process. This is fine because as a recognizer, it doesn't need to halt.

Note: The reason why you can't simply go down each input is because there might be an input that loops forever. Then, your machine would be stuck.

Another Proof of b):

A NTM recognizes $\neg E$ on input $\langle M \rangle$ as follows:

- 1. Nondeterministically guess a string x.
- 2. Use M_{μ} , the universal TM, to run M on x.
- 3. If M accepts, accept.
- 4. Since there's a NTM that recognizes $\neg E$, there's also a TM that recognizes $\neg E$.

Theorem 4.9: Consider the following language, REG = {(M) | L(M) is regular}. REG is undecidable.

Proof:

It suffices to prove that $U \leq_{M} REG$.

Given an input, $\langle M, x \rangle$ to U, we want to construct a machine $\langle M' \rangle$, which is an input to REG such that M accepts x iff L(M') is regular.

If M accepts x, then M' accepts a regular language.

If M does not accept x, then M does not accept a regular language.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M' which on input y does the following:
 - a. If y=0ⁿ1ⁿ, then accept
 - b. Else, run M on x.
 - c. If M accepts x, then M' accepts y.
 - d. Else, M' rejects y.
- 2. Return $\langle M' \rangle$

Now, we need to verify that $\langle M, x \rangle \in U$ iff $\langle M' \rangle \in REG$.

(=>)

If $\langle M, x \rangle \in U$ then

- \rightarrow M accepts x.
- \rightarrow M' accepts all inputs y. It does this in either line 1a. or line 1c. otherwise.
- $\rightarrow L(M') = \sum^{*}$.

 $\rightarrow \langle M' \rangle \in \overline{REG}.$

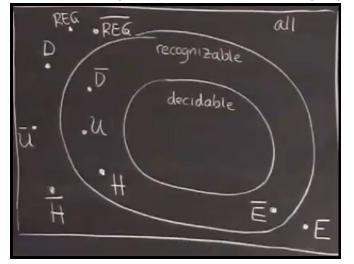
(<=)

If $\langle M, x \rangle \notin U$ then

- \rightarrow M does not accept x.
- \rightarrow M' accepts all and only strings of the form 0ⁿ1ⁿ.
- \rightarrow L(M') is not regular.
- $\rightarrow \langle M' \rangle \notin REG.$

We have shown that $U \leq_{M} REG$, so REG is undecidable.

```
Note: Since U \leq_{M} REG, \neg U \leq_{M} \neg REG. This is by theorem 4.5.
Since \neg U \leq_{M} \neg REG, \neg REG is unrecognizable.
Note: U \leq_{M} \neg REG, which means that \neg U \leq_{M} REG.
Since \neg U \leq_{M} REG, REG is unrecognizable.
```



Picture of Recognizable and Decidable Languages: